

bcm.edu/ortho

Poster #122 Skeletal Maturity Confers Increased Intra-Articular Pathology in Adolescent Patients With ACL Injury

♦ Todd Phillips, MD¹; Brian Sullivan, MD¹; Zach Terner, PhD²; Neal Goldenberg, MD³; Brett Heldt, MD¹; Raymond Guo, MD¹; Theodore Shybut, MD⁴

- ♦ ¹Department of Orthopedics, Baylor College of Medicine, Houston, TX
- ♦ ²MITRE Corporation, Arlington, VA
- ♦ 4Southern California Orthopedic Institute

Baylor College of Medicine

bcm.edu/ortho

Disclosure of Interest:

Dr. Shybut:

Arthrex, Inc research support

Smith & Nephew research support

Zimmer Biomet research support

Arthroscopy: Journal of Arthroscopy and Related Surgery Editorial Board

AOSSM Publications Committee AANA Social Media Board AAOS

Sports Medicine / Arthroscopy Program Committee

• The purpose of this study was to:

Baylor

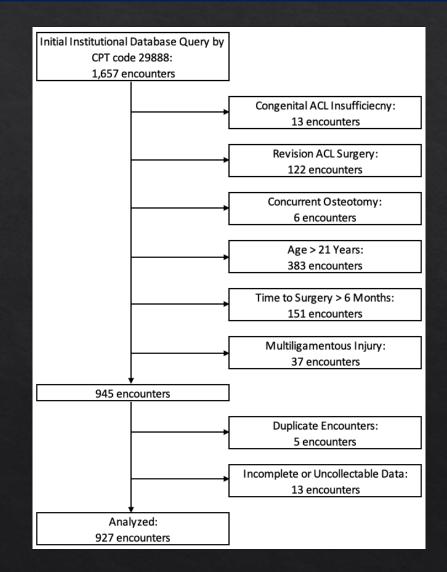
College of Medicine bcm.edu/ortho

- To assess differences in incidence of intra-articular pathology between skeletally immature and skeletally mature patients who underwent primary ACLR for an acute ACL injury
- To analyze trends in meniscal and chondral surgical treatments based upon skeletal maturity and identify significant predictors of intra-articular pathology

 A single center retrospective cohort study of acute, primary ACL reconstructions

♦IRB Approved.

Surgical case logs were queried by CPT code
29888 to identify potential subjects from January
2012 to April 2020.


Included subjects were aged 21 and below

CONSORT Flow Diagram

Baylor College of Medicine

Baylor College of bcm.edu/ortho Medicine

Skeletal maturity was determined via knee imaging (XR, MRI)

Meniscal and chondral injury characterized by involved compartment, location, pattern.

- Skeletally mature patients were more likely to have medical meniscus tears compared to skeletal immature patients
- Skeletally mature patients were more likely to have tears within the body compared to skeletal immature patients
- Skeletally mature patients were more likely to have radial and complex tears compared to skeletal immature patients
- Skeletally immature patients frequently sustained verticallongitudinal tears in the posterior horn

Meniscal Injury - Location, Pattern, o	& Treatment			Chondral Injury			
	Skeletally Mature	Skeletally Immature	p-value		Skeletally Mature	Skeletally Immature	p-value
n (%)	738	149		n (%)	218	21	
Meniscus Injury				Chondral Injury			
Medial Meniscus Tear ^a	297 (40.2%)	47 (31.5%)	<.001		122 ((1.00/)	10 (57 10/)	720
Lateral Meniscus Tear ^b	441 (59.8%)	102 (68.5%)	.274	Medial Compartment ^a	133 (61.0%)	12 (57.1%)	.729
Bicompartmental Meniscus Tear	165 (22.4%)	25 (16.8%)	.006	Lateral Compartment ^b	65 (29.8%)	6 (28.6%)	.905
Medial Meniscus Tear Location				Patellofemoral Compartment ^c	20 (9.2%)	3 (14.3%)	.448
Anterior Horn	2 (0.6%)	1 (2.1%)	.319	Medial Compartment			
Body	7 (2.4%)	1 (2.1%)	.923	Low Grade (1/2)	106 (79.7%)	11 (91.7%)	.320
Posterior Horn	185 (62.3%)	23 (48.9%)	.082	Medial Femoral Condyle	100 (75.770)	11 ()1.770)	.520
Posterior Horn-Body	31 (10.4%)	5 (10.6%)	.967	MFC 1	40 (30.1%)	5 (41.7%)	.508
Root	13 (4.4%)	3 (6.4%)	.544	MFC 2		6 (50%)	.707
Meniscocapsular	15 (5.1%)	5 (10.6%)	.128		55 (41.4%)	· · /	
Bucket Handle	44 (14.8%)	9 (19.1%)	.444	MFC 3	18 (13.5%)	1 (8.3%)	.555
Medial Meniscus Tear Pattern				MFC 4	6 (4.5%)	0 (0.0%)	.436
	1(1(54 20/)	25 (52 20)	807	Medial Tibial Plateau			
Vertical-Longitundinal	161 (54.2%)	25 (53.2%)	.897	MTP 1	6 (4.5%)	0 (0.0%)	.436
Horizontal	11 (3.7%)	1 (2.1%)	.584	MTP 2	5 (3.8%)	0 (0.0%)	.478
Oblique	13 (4.4%)	3 (6.4%)	.544 .854	MTP 3	3 (2.3%)	0 (0.0%)	.586
Radial Undersurface	11 (3.7%)	2 (4.3%)		MTP 4	0 (0.0%)	0 (0.0%)	d
Bucket Handle	13 (4.4%) 44 (14.8%)	1 (2.1%) 9 (19.1%)	.468 .444				
				Lateral Compartment			
Complex	40 (13.5%)	4 (8.5%)	.344	Low Grade (1/2)	51 (78.5%)	1 (16.7%)	.017
Medial Meniscus Tear Treatment				Lateral Femoral Condyle			
Meniscectomy	38 (12.8%)	6 (12.8%)	.996	LFC 1	12 (18.5%)	0 (0.0%)	.472
Repair	251 (84.5%)	40 (85.1%)	.916	LFC 2	21 (32.3%)	1 (16.7%)	.641
Observation	8 (2.7%)	1 (2.1%)	.821	LFC 3	8 (12.3%)	3 (50.0%)	.040
Lateral Meniscus Tear Location				LFC 4	2 (3.1%)	1 (16.7%)	.237
Anterior Horn	21 (4.8%)	1 (1.0%)	.081	Lateral Tibial Plateau			
Body	64 (14.5%)	7 (6.7%)	.038	LTP 1	6 (9.2%)	0 (0.0%)	.432
Posterior Horn	248 (56.2%)	73 (71.6%)	.004	LTP 2	12 (18.5%)	0 (0.0%)	.572
Posterior Horn-Body	35 (7.9%)	7 (6.7%)	.710	LTP 3	4 (6.2%)	1 (16.7%)	.368
Root	54 (12.2%)	6 (5.9%)	.064			1 ,	.508
Meniscocapsular	2 (0.5%)	1 (1.0%)	.466	LTP 4	0 (0.0%)	0 (0.0%)	^u
Bucket Handle	17 (3.9%)	7 (6.7%)	.186	Patellofemoral Compartment			
Lateral Meniscus Tear Pattern				Low Grade (1/2)	15 (75%.0%	2 (66.6%)	.404
Vertical-Longitundinal	155 (35.1%)	54 (52.9%)	<.001	Trochlear Groove			
Horizontal	24 (5.4%)	7 (6.7%)	.515	TG 1	0 (0.0%)	1 (33.3%)	.150
Oblique	17 (3.9%)	4 (3.9%)	.978	TG 2	0 (0.0%)	0 (0.0%)	d
Radial	124 (28.1%)	12 (11.8%)	<.001				
Undersurface	18 (4.1%)	7 (6.7%)	.229	TG 3	0 (0.0%)	0 (0.0%)	d
Bucket Handle	17 (3.9%)	7 (6.7%)	.186	TG 4	1 (5.0%)	0 (0.0%)	.666
Complex	76 (17.2%)	7 (6.7%)	.009	Patella			
Discoid	6 (1.4%)	1 (1.0%)	.757	P 1	6 (30.0%)	1 (33.3%)	.948
Lateral Meniscus Tear Treatment	· · /			P 2	9 (45.0%)	0 (0.0%)	.218
Meniscectomy	145 (32.8%)	18 (17.6%)	.002	Р 3	3 (15.0%)	1 (33.3%)	.464
Repair	264 (59.9%)	65 (63.7%)	.358	P 4	1 (5.0%)	0 (0.0%)	.666
Observation	32 (7.3%)	19 (18.6%)	.001	a = 14 identified bipolar lesions within the m			npartment;
$a^{a} = 6$ patients with multiple, distinct medial n		. (c = 2 identified bipolar lesions within the pat	A 7		* ·

Results

Age

 ♦ Age was included in the best fit model for overall meniscal injury, MMT, LMT, and chondral injury; however, it was not a significant factor for these outcomes.

Male sex significantly predicted greater incidence of meniscus injury (OR 0.59, 95% CI [0.43, 0.81], p = .001), specifically LMT (OR 0.61, 95% CI [0.46, 0.82], p < .001). Male sex was also evaluated in the best fit models of MMT and chondral injury but was not a significant factor.

♦ BMI was a significant predictor of medial compartment injury, both meniscal (OR 1.04, 95% CI [1.01, 1.06], p = .002) and chondral (OR 1.05, 95% CI [1.02, 1.09], p < .001). BMI was also evaluated in the best fit model for overall meniscal injury but was not a significant predictor. BMI was discarded from the best fit model for LMT for insignificance as a predictor.

♦ Mechanism of Injury

♦ Mechanism of injury was not found to be a significant predictor of concurrent intra-articular injury.

♦ Skeletal maturity was statistically significant in all best fit models. SM was predictive of overall meniscal injury (OR 0.01, 95% CI [0.00, 0.16], p = .003), MMT (OR 0.00, 95% CI [0.00, 0.06], p = .002), LMT (OR 0.03, 95% CI [0.00, 0.75], p = .034), and chondral injury (OR 0.00, 95% CI [0.00, 0.49], p = .049).

bcm.edu/ortho

Results

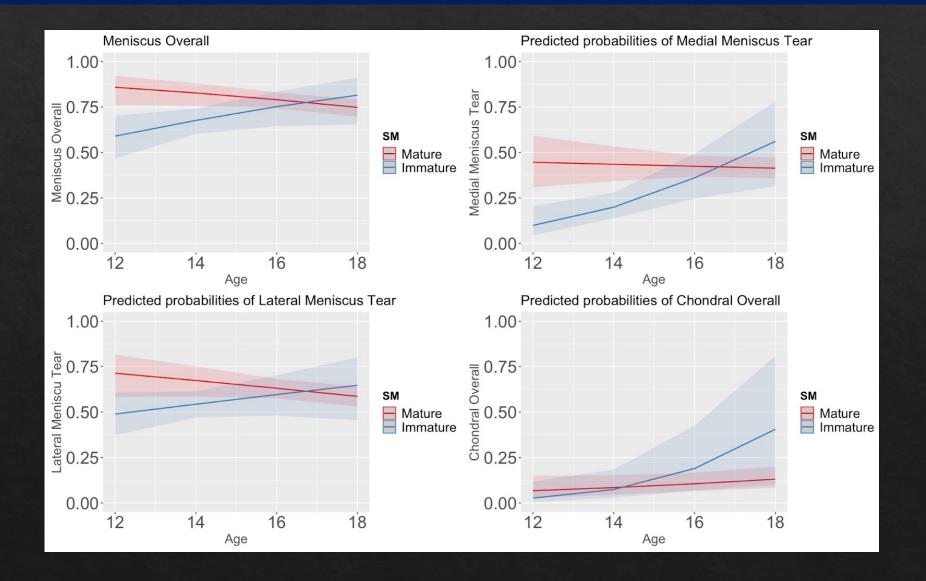
♦ Age::Skeletal Maturity

The relationship between age and skeletal maturity is well-defined; thus, an interaction term was incorporated in the regression analysis. Age::Skeletal Maturity was included in all final best fit models; however, it was only significantly predictive in overall meniscal injury (OR 1.36, 95% CI [1.09, 1.71], p = .008) and MMT (OR 1.54, 95% CI [1.15, 2.11], p = .005).

♦ Age::Body-Mass Index

♦ The relationship between age and BMI is well-defined; thus, an interaction term was added to the regression analysis. Age::BMI was not found to be a significant predictor of intra-articular injury and was discarded from all models.

♦ Body-Mass Index::Skeletal Maturity


The relationship between BMI and skeletal maturity is not well-defined. However, as adolescents continue to grow, increased mass may affect injury patterns; therefore, an interaction term was added to the regression analysis. BMI::Skeletal Maturity was included in the best fit model for chondral injury but was not found to be a significant predictor.

♦ Sex::Skeletal Maturity

The relationship between sex and skeletal maturity is well-defined; thus, an interaction term was added to the regression analysis. Sex::Skeletal Maturity was a significant predictor of MMT (OR 5.10, 95% CI [2.02, 12.10], p < .001), where skeletally immature female patients conferred increased risk of medial meniscus tear. Baylor College of Medicine

bcm.edu/ortho

Results

Results

Predictors of Intra-articular Pathology								
	Meniscus Tea	Meniscus Tear Medial Meniscus Tear		Tear	Lateral Meniscus Tear		Chondral Injury	
Characteristic	Odds Ratio [95% CI]	p-value	Odds Ratio [95% CI]	p-value	Odds Ratio [95% CI]	p-value	Odds Ratio [95% CI]	p-value
Age	0.89 [0.79, 1.00]	.050	0.98 [0.88, 1.09]	.700	0.91 [0.82, 1.01]	.086	1.13 [0.99, 1.30]	.080
Sex	0.59 [0.43, 0.81]	.001	0.74 [0.54, 1.02]	.066	0.61 [0.46, 0.82]	<.001	0.75 [0.52, 1.09]	.140
Body Mass Index (kg/m ²)	1.02 [1.00, 1.05]	.012	1.04 [1.01, 1.06]	.002	^a	^a	1.05 [1.02, 1.09]	<.001
Mechanism of Injury	a	a	a	^a	a	^a	a	^a
Skeletal Maturity	0.01 [0.00, 0.16]	.003	0.00 [0.00, 0.06]	.002	0.03 [0.00, 0.75]	.034	0.00 [0.00, 0.49]	.049
Age::Skeletal Maturity	1.36 [1.09, 1.71]	.008	1.54 [1.15, 2.11]	.005	1.22 [0.99, 1.52]	.060	1.51 [0.96, 2.54]	.093
Age::BMI	a	^a	a	^a	a	^a	a	^a
BMI::Skeletal Maturity	a	a	a	a	^a	^a	1.08 [0.99, 1.19]	.083
Sex::Skeletal Maturity	a	^a	5.10 [2.02, 13.10]	< .001	a	^a	a	^a

^a = variable removed from best fit predictive model by stewise procedure; :: = interaction variable; **bold** = significant variable in the model

There was a greater rate of meniscal intervention in skeletally mature patients

Skeletally mature patients were more likely to undergo meniscectomy

 Skeletally immature patient were more likely to undergo observation

Results

Surgical Intervention for Concomitant Injury								
	Skeletally Mature	Skeletally Immature	p-value					
Meniscal Treatment								
Meniscectomy	183 (24.8%)	24 (16.1%)	.022					
Repair	515 (69.8%)	105 (70.5%)	.867					
Observation	40 (5.4%)	20 (13.4%)	< .001					
Chondral Treatment								
Microfracture	14 (6.4%)	0 (0.0%)	.619					
Chondroplasty	14 (6.4%)	3 (14.3%)	.180					
Graft	2 (0.9%)	0 (0.0%)	1.000					
Observation	188 (86.2%)	18 (85.7%)	.945					
All Interventions	728 (76.2%)	132 (77.6%)	.672					
Meniscal Intervention	698 (94.6%)	129 (86.5%)	< .001					
Chondral Intervention	30 (13.8%)	3 (14.3%)	.947					

Conclusion

 Differences in meniscal tear patterns and locations and chondral pathology occur at increased rates dependent upon skeletal maturity

- Posterior horn injuries were more common among SI patients, with an increased rate of vertical-longitudinal morphology, as compared to SM patients where lateral meniscus tears more frequently involved the meniscal body with propensity for radial and complex morphologies.
- Observations may be likely based upon biomechanical changes during development

 There was a propensity towards partial menisectomy in skeletally mature patients.

Male sex predicted meniscal injury, and BMI
conferred increased medial compartment pathology.

Skeletal maturity significantly predicted concomitant intra-articular injury associated with ACL rupture in pediatric and adolescent cohorts, emphasizing the impact of early or delayed physeal closure on increased risk of intra-articular injury.

- 1. Millett, P.J., A.A. Willis, and R.F. Warren, *Associated injuries in pediatric and adolescent anterior cruciate ligament tears: does a delay in treatment increase the risk of meniscal tear?* Arthroscopy, 2002. **18**(9): p. 955-9.
- 2. Nishimori, M., et al., *Articular cartilage injury of the posterior lateral tibial plateau associated with acute anterior cruciate ligament injury.* Knee Surg Sports Traumatol Arthrosc, 2008. **16**(3): p. 270-4.
- 3. Potter, H.G., et al., *Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up.* Am J Sports Med, 2012. **40**(2): p. 276-85.
- 4. Brophy, R.H., et al., *Defending Puts the Anterior Cruciate Ligament at Risk During Soccer: A Gender-Based Analysis.* Sports Health, 2015. **7**(3): p. 244-9.
- Walden, M., et al., The epidemiology of anterior cruciate ligament injury in football (soccer): a review of the literature from a gender-related perspective. Knee Surg Sports Traumatol Arthrosc, 2011. 19(1): p. 3-10.
- 6. Beynnon, B.D., et al., *The Effects of Level of Competition, Sport, and Sex on the Incidence of First-Time Noncontact Anterior Cruciate Ligament Injury.* Am J Sports Med, 2014. **42**(8): p. 1806-12.
- Gornitzky, A.L., et al., Sport-Specific Yearly Risk and Incidence of Anterior Cruciate Ligament Tears in High School Athletes: A Systematic Review and Meta-analysis. Am J Sports Med, 2016. 44(10): p. 2716-2723.
- 8. Prodromos, C.C., et al., *A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen.* Arthroscopy, 2007. **23**(12): p. 1320-1325 e6.