E-Poster #129 Surgical Technique Impacts Kinematics and Outcomes of Hand-to-Back Motion After RSA

Ajinkya Rai, Clarissa LeVasseur, Gillian Kane, Maria Munsch, Jonathan Hughes ,William Anderst, Albert Lin

Disclosures

- William Anderst
 - CSRS Reviewer
- Albert Lin
 - Paid consultant for Stryker and Arthrex

Background

- Internal rotation (IR) is not reliably improved after reverse shoulder arthroplasty (RSA)¹⁻².
- Surgical techniques and implant parameters are believed to be associated with IR after RSA¹⁻².
- There are no established *in vivo* shoulder kinematics during IR after RSA, and the relationship between *in vivo* kinematics and clinical outcomes is also unknown.

Aims & Hypothesis

Aim

- Determine the effects of surgical techniques and implant parameters on glenohumeral (GH) and scapular kinematics as well as arthrokinematics after RSA.
- Determine associations between kinematics and clinical outcomes after RSA.

Hypothesis

- Surgical techniques and implant parameters are associated with GH and scapular kinematics and arthrokinematics.
- Kinematics associated with surgical techniques and implant parameters will be associated with more favorable clinical outcomes.

Methods – Data Collection

Data Collection

- Patients who previously received RSA within 1-5 years consented to participate in this IRB-approved study.
- CT scans of the shoulder were collected at time of testing (Figure 1C).
- Lateralization, glenosphere size, implant type, and eccentricity were recorded from surgical notes, while humeral retroversion and glenosphere tilt were measured from the CT.
- Clinical outcome measures were collected at time of testing (ASES, DASH, CMS scores, and IR range of motion (ROM)).
- Participants performed 3 trials of hand-to-back motions (Figure 1A) while synchronized biplane radiographs of the shoulder were collected (Figure 1B).

Methods – Data Processing

Data Processing

- Scapular upward rotation, scapular tilt, scapular protraction, GH elevation, GH plane of elevation, and GH internal/external rotation were obtained (Figure 1E,F).
- A 3D CAD model of the humeral liner was matched to the humeral tray.
- The contact path was calculated from the projection of the humeral liner center to the glenosphere throughout the entire motion and averaged at corresponding percents of the movement cycle.
- Peak posterior contact path location, as well as the anterior/posterior and superior/inferior contact path locations at the end positions were determined.
- Average end position, kinematic ROM, and peak kinematic rotations were found.

UPMC LIFE CHANGING MEDICINE

Methods

Figure 1: Biplane radiography data collection and processing. (A) Participants performed 3 hand-to-back movements while **(B)** synchronized biplane radiographs were collected for 2 seconds at 50Hz (90kV, 50mA, 2ms pulse width). **(C)** CT scans (0.47x0.47x0.625mm) were collected and **(D)** used to create 3D humerus and scapula bone models. **(E)** 3D GH kinematics were determined using a validated CT model-based tracking process⁴. **(F)** Six degree-of-freedom kinematics were calculated.

UPMC LIFE CHANGING MEDICINE

Methods

Data Analysis

- Multiple linear regression was used to determine associations between implant parameters/surgical techniques and kinematics/arthrokinematics.
- Pearson's correlations were used to determine associations between kinematics/arthrokinematics and ROM/PROs with significance set at p < 0.05.

- 34 participants (72 ± 7 years, 17 M) completed testing an average of 2.5 ± 1.2 years post surgery.
- More inferior glenosphere tilt was associated with less peak abduction (Table 1), which was associated with less IR ROM (p = 0.025).
- More inferior glenosphere tilt was associated with greater peak scapular upward rotation (Table 1), which correlated with favorable ASES scores (p = 0.047).
- Larger glenosphere size was associated with more scapular tilt ROM, which was correlated to favorable DASH scores (p = 0.047).
- No other associations were found between surgical parameters and kinematics/arthrokinematics.

Table 1: Glenosphere tilt and size associations with kinematics and arthrokinematics

More Inferiorly Tilted Glenosphere			
Kinematic/Arthrokinematic Variables	Beta	p-value	
Less Peak Abduction	0.389	0.035	
More Peak Upward Rotation	-0.371	0.018	
More Upward Rotation ROM	-0.308	0.026	
Less Peak Protraction	0.797	0.007	
More Peak Adduction	-0.499	0.005	
More Peak Posterior Plane of Elevation	-1.068	0.008	
More Anterior Plane of Elevation Endrange	-1.135	0.005	
Less Peak Scapular Posterior Tilt	0.374	0.014	
More Peak Scapular Retraction	-0.574	0.003	
Less Endrange Protraction	0.791	0.009	
UPMC CHANGING MEDICINE Department of Orthopaedic Surgery	BDDYNAMICS BIODYNAMICS	University of Pittsburgh	

5

Table 1 (cont.): Glenosphere tilt and size associations with kinematicsand arthrokinematics

Larger Glenosphere Size			
Kinematic/Arthrokinematic Variables	Beta	p-value	
More Peak Adduction	1.076	0.042	
More Scapular Tilt ROM	1.151	0.019	
Less Endrange Abduction	-1.778	0.011	
Less Endrange Rotation	-1.995	0.012	
Less Peak Posterior Contact	-0.658	0.003	

UPMC LIFE CHANGING MEDICINE

Department of Orthopaedic Surgery BD

BIODYNAMICS LABORATORY University of

Pittsburgh

Discussion

- Glenosphere tilt and size may be the most influential surgical technique and implant parameter affecting internal rotation, and the resulting kinematics may impact patient satisfaction.
- Less inferior tilt was associated with more IR ROM suggesting modifications to tilt may be a significant parameter for IR performance.
- Contrary to previous findings, greater lateralization was not associated with improved kinematics.

Clinical Significance

 Altering glenosphere tilt and size to increase peak abduction, peak upward rotation, and scapular tilt ROM in IR may lead to improved outcomes.

UPMC LIFE CHANGING MEDICINE

References

- 1) Berhouet, et al., (2013). JSES.
- 2) Werner et al., (2021). JSES.
- 3) Bey, et al. (2006). *J Biomech*.
- This work was funded by NIH Grant: R03AG064417

This work is supported by NIH R03: AG064417

