

Orthopedics and Sports Medicine

Poster 75

Machine Learning Prediction of "Optimal Observed Outcome" for Anterior Shoulder Instability Surgery

Sara Till, MD, Yining Lu, MD, Anna K. Reinholz, BS, Alexander M. Boos, BA, Aaron J Krych, MD, Kelechi R Okoroha, MD, Christopher L Camp, MD

Investigation performed at the Mayo Clinic Department of Orthopedic Surgery, Rochester, Minnesota

I (and/or my co-authors) have something to disclose.

Detailed disclosure information is available via:

"My Academy" app;

Printed Final Program; or

AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure

ANTERIOR SHOULDER INSTABILITY (ASI)

 Common causes of shoulder dysfunction in athletes

- Surgery recommended for:
 - hx of multiple instability events
 - substantial bone loss

MAYO CLINIC

Orthopedics and Sports Medicine

- Goal to improve pain, stability, range of motion, and return to previous sport or activity without progression of future arthritis
- Are these outcomes mutually exclusive?

THE ROLE OF ARTIFICIAL INTELLIGENCE

unsupervised learning

- Unsupervised learning can identify hidden patterns
 - Takes all features and group data points based on similarity to each other
 - Optimal outcomes (apples)
 - Suboptimal outcomes (oranges)

MAYO CLINIC | Orthopedics and Sports Medicine

STUDY QUESTION

How do we best define the "optimal observed outcome" after anterior shoulder instability surgery?

PURPOSE

 Aim 1: Define the "optimal observed outcome" after operative treatment for ASI

- Aim 2: Determine percentage of patients who achieved optimal outcome and timeline for achievement
 - **Determine** percentage of patients who achieved a "perfect outcome" defined as top performer in all outcome measures

 Aim 3: Identify factors correlated with achieving this "optimal observed outcome"

METHODS: DATA CURATION

- Retrospective cohort study from the Rochester Epidemiology Project
- Patients were included if
 - 1 or more ASI events
 - <40 years of age at the time of initial instability
 - treated surgically
 - minimum of 2-years follow-up
- Patients with evidence of multidirectional or posterior instability only were excluded

METHODS: OUTCOMES

- **Primary outcome**: subgroups in composite achievement of the following outcomes
 - Restoration of ROM to within 5 degrees of normal
 - No recurrent instability
 - No revision surgery
 - No pain at final follow-up
 - Full return to sports
 - No progression to OA
 - No complications
 - Achievement of all => Perfect outcome

METHODS: WORKFLOW

• Risk factors for a patient being in the suboptimal subgroup using multivariate logistic regression

RESULTS: BASELINE DEMOGRAPHICS

228 patients

MAYO CLINIC

Orthopedics and Sports Medicine

- 146 (64%) optimal outcome
 82 perfect outcome (41%)
- 54 (36%) suboptimal outcome
- Median follow-up 11.1 years
- No differences in gender and sports participation

RESULTS: BASELINE DEMOGRAPHICS

RESULTS: CSO ACHIEVEMENT BY SUBGROUP

Comparison of CSOs Stratified by Subgroup Membership					
	Optimal Outcome	Suboptimal Outcome			
Number of Patients	(N =146) (• •)	(N=54) (° °)			
Recurrent Pain	33 (22.6%)	28 (51.9%)	<0.001		
Recurrent Instability	18 (12.3%)	22 (40.7%)	<0.001		
Post-Operative Pain			0.001		
None	127 (87.0%)	35 (64.8%)			
Mild	17 (11.6%)	12 (22.2%)			
Moderate	2 (1.4%)	6 (11.1%)			
Severe	0 (0.0%)	1 (1.9%)			
Underwent Revision Surgery	14 (9.6%)	13 (24.1%)	0.015		
Symptomatic Osteoarthritis	7 (4.8%)	10 (18.5%)	0.005		

MAYO CLINIC | Orthop () Sports

RESULTS: PREDICTORS OF OPTIMAL OUTCOME

Predictors of optimal observed outcome following operative treatment of anterior	
shoulder instability	

/			
	Odds Ratio (OR)	95% CI	P value
Months from initial instability to surgical consult	0.95	0.92-0.98	0.006
Number of subluxations prior to			0.030
surgery	1.30	1.02-1.65	
Habitual/voluntary instability	0.17	0.04-0.77	0.020

CONCLUSION

- Total of 64% of patient achieved the "optimal observed outcome" defined as: minimal postoperative pain, no recurrent instability or OA, low revision surgery rates, and increased ROM.
 - Only 41% achieved a "perfect outcome."

 Positive predictors were shorter time to presentation and predilection towards pre-operative subluxations over dislocations.

- Single institution, retrospective data
- Inconsistency in operative techniques and postoperative regimens.
 - Injury characteristics and nuances (such as bone loss) often determine best surgical technique.
- Lacking in patient reported outcomes

Orthopedics and Sports Medicine

NES

