Poster #90

Outcomes of Biceps Tenodesis Variations with Concomitant Rotator Cuff Repair

David P. Hagan, MD, Kevin A. Hao, BS, Joseph J. King, MD, Ramesh C. Srinivasan, MD, Thomas W. Wright, MD, Michael W. Moser, MD, Kevin W. Farmer, MD, Jonathan O. Wright, MD, Marissa Pazik, LAT, ATC, CSCS, Ryan P. Roach, MD

University of Florida Department of Orthopaedic Surgery and Sports Medicine

Disclosures

- **Dr. Joseph King** has received consulting fees from Exactech and LinkBio Corp.
- **Dr. Ramesh Srinivasan** has received consulting fees and compensation for services
- other than consulting from Acumed; hospitality from Exactech and Integra LifeSciences
- Corp; education payments from Medinc of Texas.
- Dr. Thomas Wright has received royalties and consulting fees from Exactech.
- Dr. Michael Moser has received education payments from Fortis Surgical
- Dr. Kevin Farmer has received consulting fees from Exactech, Pacira Therapeutics, and
- Arthrex; compensation for services other than consulting from Arthrex, Baudex, CCG
- Medical, Arthrosurface Inc; honoraria from Baudex; education payments from Arthrex
- and CCG Medical
- Dr. Jonathan Wright has received hospitality from Stryker, Acumed, and Zimmer
- Biomet; education payments from Pinnacle
- Dr. Ryan Roach has received education payments from Arthrex and Smith+Nephew; grant from
- Arthrex

Objective & Hypothesis

- Biceps tenodesis is frequently performed in the setting of rotator cuff repair (RCR)
- Optimal tenodesis methods have been debated
 - Subtle differences in tenodesis methods may be elucidated with larger numbers
- Objective: To determine whether an optimal biceps tenodesis method exists in concomitant RCR
- Hypothesis: All tenodesis methods would provide positive outcomes without any difference between methods

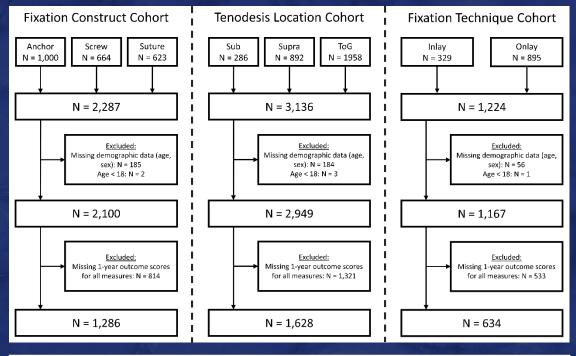
Materials & Methods

Retrospective Cohort Study

Arthrex Surgical Outcomes Systems (SOS) database

Patient Selection

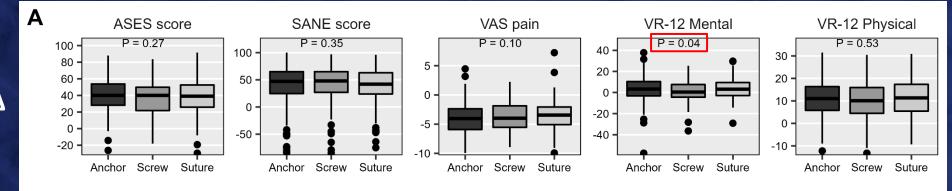
- SOS Database queried for each study group of interest
- Inclusion:
 - ≥18 years
 - Minimum 1-year follow-up
 - Undergoing biceps tenodesis with concomitant RCR
 - Medium or large cuff tears (1-5cm) per Cofield classification


Biceps Tenodesis Variables

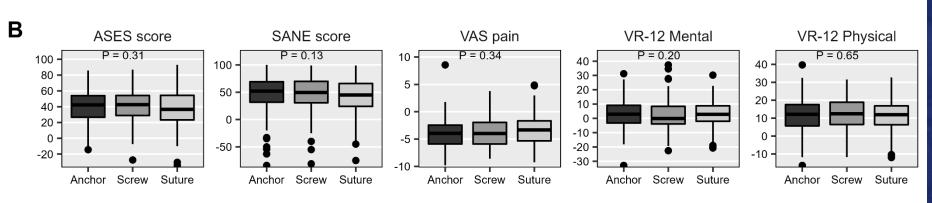
- Construct: anchor, screw, suture to soft tissue
- <u>Location</u>: subpectoral, suprapectoral, top of groove
- <u>Technique</u>: inlay, onlay

Analysis

- Outcome measures compared based on tenodesis variables at 1- and
 2-year follow-up points
 - Continuous values nonparametric testing
 - Proportion of patients exceeding the largest reported MCID (ASES = 27.1, SANE = 16.9, VAS = 2.4)



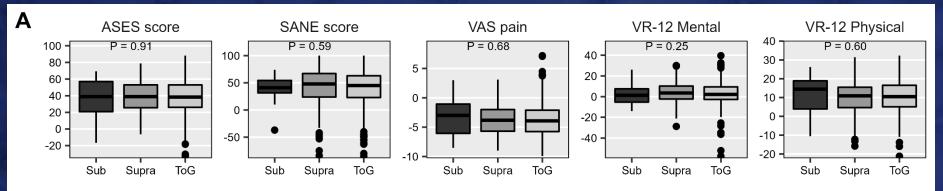
Demographics of included shoulders								
Construct	Anchor (N = 293)	Screw (N = 202)	Suture (N = 191)	P				
Age	59.6 ± 9.3	61.5 ± 9.3	60.6 ± 9.4	.045				
Female Sex	28.7% (118)	28.1% (79)	26.8% (70)	.725				
Location	Subpectoral (N = 33)	Suprapectoral (N = 261)	Top of Groove (N = 553)	P				
Age	58.0 ± 9.1	58.9 ± 8.8	61.8 ± 9.4	<.001				
Female Sex	19.5% (8)	25.6% (90)	30.4% (242)	.007				
Technique	Inlay (N = 112)	Onlay (N = 258)		P				
Age	61.8 ± 8.1	61.1 ± 9.8		.909				
Female Sex	30.4% (49)	30.8% (115)		.974				


Fixation: Anchor vs. Screw vs. Suture

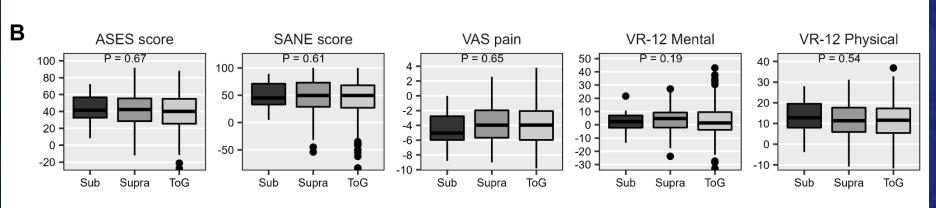
Anchor and suture > screw for VR-12 Mental Score @ 1-year (P = .042) No difference in proportion exceeding MCID

1-Year Δ

2-Year Δ

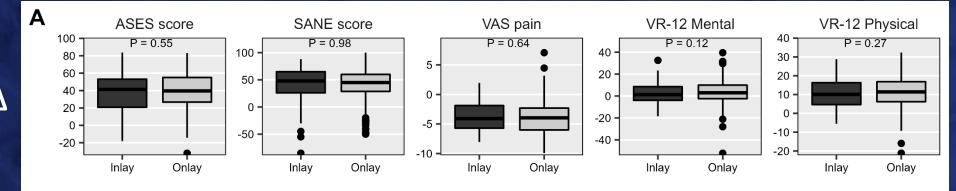


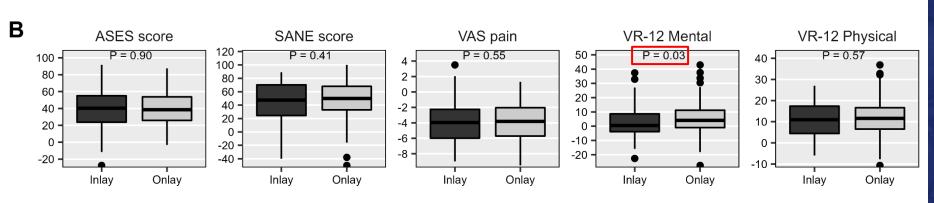
Location: Subpectoral vs. Suprapectoral vs. Top of Groove


No differences in scores

No difference in proportion exceeding MCID

1-Year Δ


2-Year Δ


Technique: Inlay vs. Onlay

Onlay > Inlay for VR-12 Mental Score @ 2-year (P = .029) No difference in proportion exceeding MCID

1-Year Δ

2-Year Δ

MCID Analysis for Outcome Measures

Table II. Comparison of shoulders that exceeded the minimal clinically important difference for ASES, SANE, and VAS scores after arthroscopic rotator cuff repair at 1-year and 2-year follow-up.

Cohort	ASES score (MCID: 27.1)		SANE score (SANE score (MCID: 16.9)		VAS score (MCID: 2.4)	
	1-year	2-year	1-year	2-year	1-year	2-year	
Construct							
Anchor	77.0% (194)	74.1% (140)	81.0% (204)	86.7% (163)	74.0% (191)	75.9% (145)	
Screw	72.6% (119)	76.3% (103)	81.2% (134)	83.1% (113)	70.2% (118)	69.3% (97)	
Suture	73.1% (114)	69.4% (84)	80.3% (126)	81.0% (98)	70.6% (113)	64.2% (79)	
<i>P</i> value	520	448	975	.382	626	077	
Location							
Subpectoral	65.2% (15)	81.0% (17)	87.0% (20)	95.2% (20)	64.0% (16)	78.3% (18)	
Suprapectoral	72.2% (148)	77.6% (128)	78.5% (161)	84.1% (138)	68.2% (144)	68.8% (117)	
Top of Groove	72.2% (351)	71.8% (234)	79.7% (389)	82.3% (270)	71.8% (356)	70.9% (236)	
P value	.763	.292	.633	.290	.494	.632	
Technique							
Inlay	71.3% (62)	72.2% (52)	79.3% (69)	79.2% (57)	70.5% (62)	72.6% (53)	
Onlay	73.8% (180)	72.4% (97)	83.2% (203)	87.4% (118)	72.9% (180)	70.6% (96)	
P value	.755	1.000	.516	.174	.767	.883	

Conclusions

- All tenodesis methods demonstrated positive outcomes in patients undergoing concomitant RCR for medium-to-large tears
- There were minimal differences between tenodesis methods at
 - 1- and 2-year follow-up
 - No differences in MCID

Significance

 With no clear optimal tenodesis method, approach should be left to the surgeon and individualized for each patient

Questions?

David Hagan, MD

UF Department of
Orthopedic Surgery
Hagandp@ortho.ufl.edu