Inferior Hill-Sachs Extension Associated with Recurrent Instability Following Arthroscopic Bankart Repair

AANA ePoster 21

Presenter: Ting Cong MD

Co-authors: Shaquille Charles, Rajiv P. Reddy, Michael Fox, Gabrielle Fatora, Aaron Barrow, Bryson Lesniak, Mark Rodosky, Jonathan D. Hughes, Adam Popchak, Albert Lin

No relevant conflicts

Department of Orthopaedic Surgery

Problem

1 out of 4 primary arthroscopic stabilizations fail.

> Arthroscopy. 2023 Mar;39(3):682-688. doi: 10.1016/j.arthro.2022.10.012. Epub 2022 Dec 7.

Increased Failure Rates After Arthroscopic Bankart Repair After Second Dislocation Compared to Primary Dislocation With Comparable Clinical Outcomes

Michael A Fox ¹, Nicholas P Drain ², Ajinkya Rai ², Aaron Zheng ³, Noel B Carlos ³, Rafael Serrano Riera ², Soheil Sabzevari ², Jonathan D Hughes ², Adam Popchak ⁴, Mark W Rodosky ², Bryson P Lesniak ², Albert Lin ²

Fix after 1^{st} dislocation = 14.2% fail

Fix after 2nd dislocation = **42.8% fail**

Solution

Open capsular shift?

Remplissage?

> J Shoulder Elbow Surg. 2022 Feb;31(2):359-366. doi: 10.1016/j.jse.2021.07.021. Epub 2021 Aug 25.

Long-term outcomes of open modified inferior capsular shift for traumatic anterior shoulder instability: over 20 years of follow-up

10.5% recurrence 88.4% RTS

Naoki Takatori ¹, Yoshiyasu Uchiyama ², Takeshi Imai ², Masahiko Watanabe ²

Comparative Study > Arthroscopy. 2021 Feb;37(2):706-717. doi: 10.1016/j.arthro.2020.08.033. Epub 2020 Sep 7.

Arthroscopic Bankart Repair With Remplissage in Comparison to Bone Block Augmentation for Anterior Shoulder Instability With Bipolar Bone Loss: A Systematic Review

Kyle Gouveia ¹, Syed Kumail Abidi ², Saif Shamshoon ³, Chetan Gohal ⁴, Kim Madden ⁴, Ryan M Degen ⁵, Timothy Leroux ⁶, Bashar Alolabi ⁴, Moin Khan ⁷

0-15% recurrence

How do we stratify?

Table IV. Instability severity index score is based on a pre-operative questionnaire, clinical examination, and radiographs

Prognostic factors	Points
Age at surgery (yrs)	
≤ 20	2
> 20	0
Degree of sport participation (p	ore-operative)
Competitive	2
Recreational or none	0
Type of sport (pre-operative)	
Contact or forced overhead	1
Other	0
Shoulder hyperlaxity	
Shoulder hyperlaxity (anter	ior or inferior) 1
Normal laxity	0
Hill-Sachs on AP [*] radiograph	
Visible in external rotation	2
Not visible in external rotat	ion 0
Glenoid loss of contour on AP	radiograph
Loss of contour	2
No lesion	0
Total (points)	10
* AP, anteroposterior	
	J Bone Joint Surg [Br]
	2007;89-B:1470-7.
F. BALG, P. BOILEAU	Received 27 November 2006;
	2007

 Table 2.
 Non-bone Loss Factors Were the Same in ISIS and GTIMS

GTIMS Prognostic Factors	Score
Age at surgery (years)	
≤ 20	2
> 20	0
Type of sport	
Contact or forced overhead	1
Other	0
Level of competition in sport	
Competitive	2
Recreational or none	0
Shoulder hyperlaxity	
Confirmed anterior or inferior hyperlaxity	1
Normal laxity	0
Evaluation of bone loss on 3D CT	
"On-Track"	0
"Off-Track"	4
Total GTIMS	10

NOTE.Bone loss was evaluated on 3D reconstructed shoulder CT scans and categorized as "on-track" or "off-track" in GTIMS. 3D, Three-dimensional; CT, computed tomography; GTIMS, Glenoid Track Instability Management Score.

© 2019 by the Arthroscopy Association of North America 0749-8063/18639/\$36.00 https://doi.org/10.1016/j.arthro.2019.07.020

No one seem

to use these...

We think there are 2 solutions.

Think **simple** \rightarrow look again at bone loss

Think **complex** → Machine learning

Think Simple: bone loss is bipolar

We should pay as much attention to **humeral bone loss** as we do glenoid. (Hill-Sachs)

Problem with track concept

Glenoid bone loss is 1 dimensional.

But humeral bone loss is 2 dimensional.

Glenoid track concept is 1 dimensional...

(Di Giacomo, 2014)

What about the vertical dimension of a Hill Sachs?

Inferior extension of a Hill-Sachs lesion is higher risk for recurrence

• due to risk for engagement in functional range of motion (lower degrees of abduction)

Retrospective cohort study

- Primary arthroscopic Bankart repair (without remplissage), min 2 yr f/u
- **On-track** lesions only
- Anterior instability only
- Correlate inferior HS extension with recurrence

Methods – craniocaudal HS measurement

SMA and LEA both measure Hill-Sachs inferior extension

Results

176 patients met criteria

- Mean age 20.6, f/u 5.9 years
- 69.3% contact sport participation
- 42 (23.9%) experienced recurrent instability (subluxation OR dislocation).

Results - Univariate

Univariate predictors of recurrence:

- Age
- Multiple dislocations
- Glenoid bone loss
- Distance to dislocation
- Hill Sachs Interval
- SMA >60deg
- LEA >90deg

(OR 0.85, 95%CI 0.76-0.95, p=0.004)

(OR 2.4, 95%CI 1.06-5.42, p=0.035)

(OR 1.16, 95%CI 1.09-1.24, p<0.001)

(OR 0.92, 95%CI 0.86-0.98, p=0.008)

(OR 1.08, 95%Cl 1.01-1.16, p=0.031)

(OR 2.39, 95%CI 1.03-5.54, p=0.042)

(OR 2.22, 95%CI 0.89-5.58, p=0.089)**

Results – Multivariate

Hill-Sachs Interval and Distance-to-Dislocation both **collinear** with SMA and LEA

After controlling for confounders, risk for recurrent instability (subluxation OR dislocation):

- SMA >60deg (OR 2.22, 95%CI 0.99-4.98, p=0.052)**
- LEA >90deg (OR 3.29, 95%Cl 1.19-9.07, p=0.022)

Sub-analysis for *recurrent dislocation only*:

• LEA >90deg (OR 4.8, 95%CI 1.68-13.66, p=0.03)

Results – LEA + glenoid bone loss = powerful depiction of bipolar bone loss

Department of Orthopaedic Surgery

Summary – Think Simple

Hill Sachs lesions that extend below equator = BAD

• Collinear with Hill-Sachs Interval and Distance-to-Dislocation

Easy to identify

• Scroll through sagittal MRI – look for crossing equator

Help stratify for remplissage/open capsular shift?

• Need validation

Think **Complex** – how to really stratify

Adds-on

Predict risk of failure of arthroscopic Bankart repair only within 2 years

Stay Tuned....

Thank you!

