Poster #5

A Method for Establishing Best Values for MCID, SCB, and PASS Thresholds after Rotator Cuff Repair

Alexander C. Lee¹, MD; Joshua Chiang², MD; Radhika Gupta², BS; John D. Kelly IV², MD; Robert L. Parisien³, MD

The Ohio State University¹; University of Pensylvania²; Mount Sinai Health System³

We have no conflicts of interest to disclose

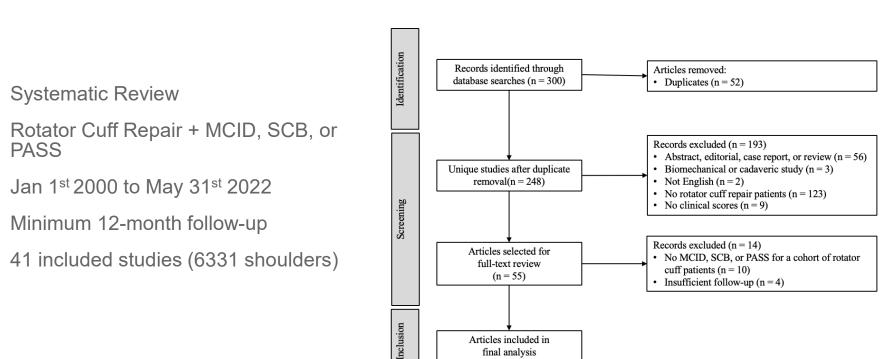
Background

Minimum clinically important difference (MCID), substantial clinical benefit (SCB), and patient acceptable symptom state (PASS) thresholds **ascribe significance** to PROMs after a given intervention

Significant variability undermines the usefulness of these concepts

> Am J Sports Med. 2024 Feb 6:3635465231202019. doi: 10.1177/03635465231202019. Online ahead of print.

Variability of MCID, SCB, and PASS Thresholds in Studies Assessing Patient-Reported Outcomes After Rotator Cuff Repair: A Systematic Review


Alexander C Lee ¹, Radhika Gupta ¹, John D Kelly 4th ², Xinning Li ³, Robert L Parisien ⁴

Thresholds are specific to PROM + Intervention

MCID for ASES score following rotator cuff repair

Not MCID for rotator cuff repair

final analysis (n = 41)

Reported Thresholds

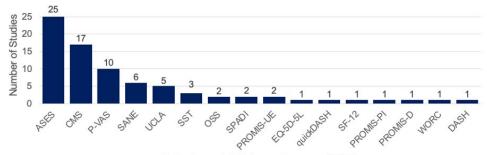
Minimal Clinically Important Difference (MCID) The change in outcome score that represents the **smallest** significant clinical improvement after surgery

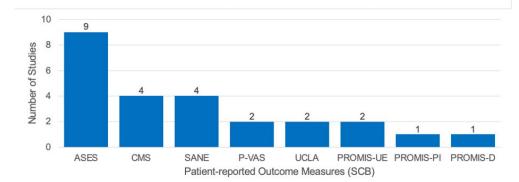
Substantial Clinical Benefit (SCB) Considerable improvement from preoperative health

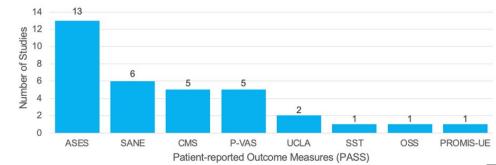
Patient Acceptable Symptom State (PASS) Minimum **postoperative** health outcome required to establish patient satisfaction

*Some studies reported multiple thresholds

16 Studies




37 Studies


11 Studies

Patient Reported Outcome Measures

Patient-reported Outcome Measures (MCID)

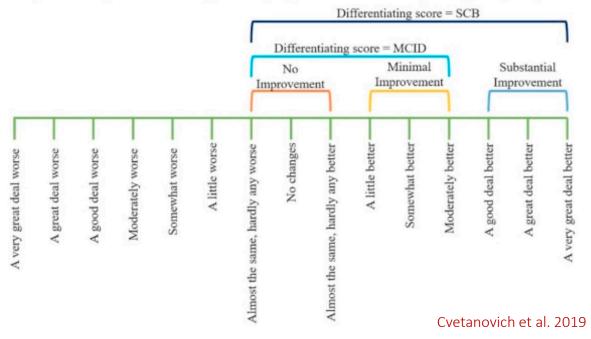
Calculation Methods

Anchor-based (12 studies)

Thresholds from correlation of PROM scores with an **anchor question**

Distribution-based (6 studies)

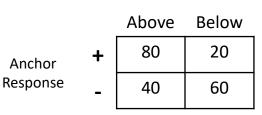
Thresholds from patient PROM scores without an anchor question


Referenced existing studies (29 studies)

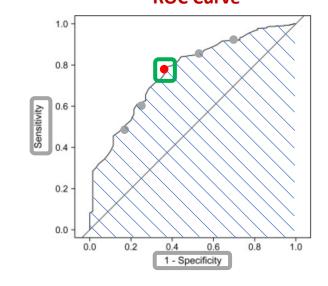
Thresholds taken from the existing literature

Anchor Questions

A) Anchor Question: Since your surgery, has there been any change in your pain?



Negative Anchor for MCID And SCB Positive Anchor for MCID Positive Anchor for SCB

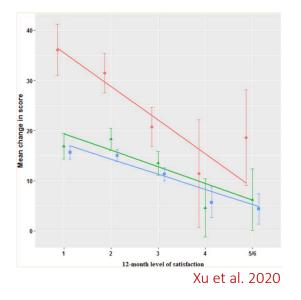

Calculation Methods (Anchor-based)

Receiver operator characteristic (ROC) analysis

	Sens	Spec
4	.95	.38
7	.85	.45
10	.80	.60
15	.60	.65

Threshold = 10

MCID/SCB/PASS = max {sensitivity + specificity} = Area Under the Curve



ROC Curve

Calculation Methods

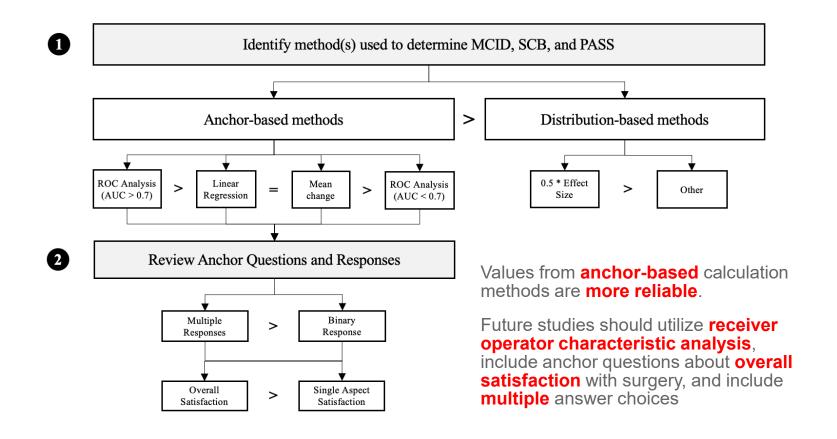
Linear Regression (Anchor)

Has the surgery met your expectation so far? 1 = Yes, totally... 3 = Yes, quite a bit... 5 = No, not quite... 7 = No, not at all

Slope of line = MCID

Mean Improvement (Anchor) Average improvement among patients with a **positive anchor** response

Effect size (Distribution) The **standard deviation** of **preoperative** values



Anchor and Distribution Studies

Study	Elig Patients	Follow-up (months)	Lost to Follow-up	Country	Evidence, Study Type	Metric	Score	Method(s)
Kukkonen (2013)	802	3, 12	3%	Finland	Basic Science - Validation of Outcomes Instrument	MCID	CMS	ROC Analysis, Mean Change (Positive Anchor) Effect Size
Gagnier (2018)	222	15	91%	United States	Basic Science - Validation of Outcomes Instrument	MCID	ASES, WORC	Mean Change (Positive Anchor)
Cvetanovich (2019)	355	12	19%	United States	Basic Science - Validation of Outcomes Instrument	MCID, SCB, PASS	ASES, CMS, SANE	ROC Analysis, Effect Size
Gowd (2019)	89	12	-	United States	Level III - Cohort Study	MCID, SCB, PASS	ASES, CMS	ROC Analysis
Xu (2019)	327	12 24	6% 32%	Singapore	Level III - Cohort Study	MCID	CMS, OSS, UCLA	Linear Regression
Haunschild	101	12	-	United States	Level III - Cohort Study	SCB, PASS	PROMIS-UE	ROC Analysis
(2020)	105	12	-	United States	Level III - Conon Study	MCID		Effect Size
						PASS	ASES, P-VAS, SANE,	ROC Analysis
Kim (2020)	92	12	11%	South Korea	Level III - Cohort Study	MCID, SCB	UCLA	ROC Analysis, Mean Change (Positive Anchor
Tashjian (2020)	202	12	-	United States	Basic Science - Validation of Outcomes Instrument	MCID	ASES, P-VAS, SST	Mean Change (Positive Anchor)
Marks (2021) 153		153 12	3%	Switzerland	Level III - Cohort Study	MCID	EQ-5D-5L	ROC Analysis
	153							Mean Change (Positive Anchor)
							Effect Size	
Pagan - Conesa (2021)	110	12	17%	Spain	Level III - Prospective Therapeutic Study	MCID	CMS, pain-VAS	Mean Change (All) minus 0.5 * SD Change (All)
Malavolta (2022)	329	12	12%	Brazil	Basic Science - Validation of Outcomes Instrument	MCID	ASES, UCLA	ROC Analysis, Effect Size
Kim (2022)	117	24	-	South Korea	Level III - Case Series	PASS	ASES, P-VAS, SANE	ROC Analysis
Tramer (2022)	198	18	15%	United States	Level III - Cohort Study	MCID, SCB	PROMIS - D, PROMIS - PI, PROMIS-UE	ROC Analysis

Methodology

Recommendations

MCID							
	Num	Measurement Range of MCID		Our Recommendation			
	Studies Range		reported	Value	Study		
ASES	26	0 - 100 6.1 - 39		21	Kim (2020)		
CMS	17	0 - 100	2.0 - 44.5	5.5	Cvetanovich (2019)		
P-VAS	9	0 - 10	1.4 - 6.5	1.5	Kim (2020)		
SANE	6	0 - 100	12.0 - 29.4	12	Kim (2020)		
UCLA	5	0 - 35 2.5 - 9.3		6	Kim (2020)		
	Num	Num Measurement Range of SCB		Our Recommendation			
	Studies	Range	reported	Value	Study		
ASES	9	0 - 100	16.8 - 27.9	26	Kim (2020)		
SANE	4	0 - 100 20.0 - 32.8		20	Kim (2020)		
	N		Range of PASS reported	Our Recommendation			
	Num Studies	Measurement Range		Value	Study		
ASES	13	0 - 100	78.0 - 93.5	78	Kim (2020)		
SANE	6	0 - 100	71.0 - 82.5	71	Kim (2020)		
CMS	5	0 - 100	23.3 - 44.0	23.3	Cvetanovich (2019)		
P-VAS	5	0 - 10	0.5 - 1.7	1.7	Kim (2020)		

First proposed method for choosing best MCID, SCB, and PASS thresholds for an Orthopaedic Surgery

Recommend calculation provides reproducible way determine MCID, SCB, and PASS from patient cohort data

Recommended values provide standardization for studies reporting MCID, SCB, and PASS for rotator cuff repair using common PROMs

Poster #5

A Method for Establishing Best Values for MCID, SCB, and PASS Thresholds after Rotator Cuff Repair

Alexander C. Lee¹, MD; Joshua Chiang², MD; Radhika Gupta², BS; John D. Kelly IV², MD; Robert L. Parisien³, MD

The Ohio State University¹; University of Pensylvania²; Mount Sinai Health System³

