ePoster Number: 55

Increased Ligament Injury and FCL Reconstruction in Polytrauma Multiligamentous Knee Injuries

Collin D.R. Hunter, BS; Joseph Featherall, MD; Natalya McNamara, MD; Patrick Greis, MD; Travis G. Maak, MD; Stephen K. Aoki, MD; Justin J. Ernat, MD

Disclosures

Presenter: Collin Hunter, B.S – None

Co-Authors: Speaker & Education

Joseph Featherall, MD – None

Natalya McNamara, MD – None

Patrick Gries, MD – Merck & Co., Stock or Stock Options

Travis Maak, MD – CORR, Editorial Board; Athrex, Paid consultant,

Stephen Aoki, MD – Stryker Corp, Paid Consultant

Justin Ernat, MD – Johnson & Johnson, Paid Consultant

Background and Objectives

- patterns.
- Objectives were to describe:

 Mechanisms of injury • Ligament injury patterns Surgical interventions for ligaments

• Multiligamentous knee injuries (MLKIs) resulting from high energy (HE) or polytraumatic (PT) result in worse patient-reported outcomes. • There remains a paucity of information on how these distinct mechanism types - HE and PT - directly relate to MLKIs injury

Inclusion Criteria

- Patient's with MLKI
- Availability of operative reports

Materials and Methods

- Documentation of mechanism - Availability of MRI reports

• Single institution, retrospective chart review

• April 2008 through October 2022

• Minimum 2-ligaments surgical treated

Materials and Methods: Classification of Mechanisms

High Energy MLKI

Resulting from mechanisms caused as a result of significant external forces such as motor vehicle accidents or falls greater than 1.5 meters in height.

Polytraumatic MLKI

Involving additional traumatic injuries to the head, spine, extremities, abdomen, and/or pelvis

Low Energy MLKI

Resulting from less severe mechanisms like ground-level falls or sports injuries.

Non-Polytraumatic MLKI

Do not involve additional traumatic injuries outside of the knee joint

Results: Demographics

High Energy MLKI 62 patients Age: 31 BMI: 30 Male/Female: 49/13

68% 32%

Polytraumatic MLKI

Age: 31 BMI: 30

85%
5%
10%

Low Energy M
114 patients
Age: 26
BMI: 28
Male/Female: 7

Sports	68%
GLF	12%
Other	20%

Non-Polytr	aumatic MLKI
135	patients
A	ge: 27
B	MI: 28
Male/Fe	emale: 91/46
MVC	11%
Snorts	56%
Sports	

Results: High Energy vs. Low Energy MLKI

Injuried Ligaments in HE vs. LE MLKI by %

* = p-value < 0.05

LKI Surgeries	
tients	
39*	
62	
39	
89	

33*	
31	
28	
48	

* = p-value < 0.05**Non-polytraumatic MLKI Injuries** 135 patients 66* 91 58* 112 2.4* **Polytraumatic MLKI Injuries** 41 natients

	20*
NCL	29
PCL	27*
ACL	36
Avg # of ligaments	2.9*

Results: Polytrauma vs. Non-Polytrauma Surgeries

* = p-value < 0.05

49* 47* 103

23* 18 20*

34

Conclusions

• Our study elucidates an association between the mechanism of MLKIs and their severity, with HE and PT mechanisms more frequently involving PCL and LCL injuries and necessitating higher rates of LCL surgical intervention. Additionally, the average number of ligaments injured in MLKIs resulting from HE and PT mechanisms is higher compared to those from LE and NPT mechanisms.

Significance of Findings

• The present study adds to the existing literature by demonstrating the differences in both injury patterns and surgical intervention for patients with MLKIs in the setting of HE, LE, PT, and NPT.

• These findings highlight the importance of considering the injury severity and the mechanism of injury for clinical decision-making in patients with MLKIs.

