e-Poster Number: 56

Increased Throwing Velocity and External Rotational Strength in Overhead Athletes After Completion of a 6-week Shoulder-Pacemaker Strength Training Protocol – A Randomized Controlled Trial

Sebastian Rilk^{1,2}, Fabian Tomanek^{2,5}, Philipp Heuberer³, Ulrich Lanz⁴

¹ Hospital for Special Surgery, NewYork-Presbyterian, Weill Medical College of Cornell University, NYC, NY, USA ² Medical University of Vienna, Vienna, Austria

³ healthPi Medical Center, Vienna, Austria

⁴ Sportorthopädie Zentrum, Vienna, Austria

ANA24 BOSTON MAY 9-11, 2024

DISCLOSURE OF INTEREST INFORMATION

All authors have no conflict of interest to declare.

BACKGROUND

Randomized Controlled Trial > Phys Ther. 2024 Jan 1;104(1):pzad145. doi: 10.1093/pti/pzad145.

Neuromuscular Electrical Stimulation-Enhanced Physical Therapist Intervention for Functional Posterior Shoulder Instability (Type B1): A Multicenter Randomized Controlled Trial

Philipp Moroder ¹, Katrin Karpinski², Doruk Akgün ², Victor Danzinger ², Christian Gerhardt ³, Thilo Patzer ⁴, Mark Tauber ⁵, Mathias Wellmann ⁶, Markus Scheibel ¹ ², Pascal Boileau ⁷, Simon Lambert ⁸, Giuseppe Porcellini ⁹, Laurent Audige ¹

Clinical Trial > Am J Sports Med. 2020 Jul;48(9):2097-2104. doi: 10.1177/0363546520933841.

Shoulder-Pacemaker Treatment Concept for Posterior Positional Functional Shoulder Instability: A Prospective Clinical Trial

Philipp Moroder 1, Fabian Plachel 1, Heiko Van-Vliet 2, Christiane Adamczewski 3, Victor Danzinger 1

- The successful application of Shoulder Pacemaker (SPM) protocols using motion-triggered neuromuscular electrical stimulation (NMES) for treatment-resistant functional posterior shoulder instability has been demonstrated.
- Rapid improvement in subjective patient reported outcome measurements (PROMs), sustained at two-year follow-up (FU), have been presented with an improved response in young and more athletic patients.

OBJECTIVE

To evaluate the impact of a 6-week SPM training protocol in healthy, elite level handball players on external rotational strength and throwing velocity.

HYPOTHESIS

It is hypothesized that a 6-week SPM training protocol in elite level handball players leads to an increase in throwing velocity due to improved external rotational (ER) shoulder strength and motor ability.

METHODS

- Prospective randomized controlled trial
- 14 male healthy handball player (Austrian 1. league team)
- 1:1 randomized group allocation (examiner blinded)
- Exclusion criteria
 - History of shoulder instability (Type I or II)
 - Existing pain syndrome (pain at rest/during motion impeding training)
 - Recent shoulder surgery (<1 year)

METHODS

METHODS

Baseline + 6-week follow-up evaluation SPM and Control group

Clinical examination to rule out type I or II shoulder instability

Performance testing

- Handball throwing velocity
- Isometric dynamometer IR/ER strength

Performance testing

Handball throwing velocity

- Standing 7-m throw measured by radar gun
 - 1. Standardized W-UP
 - 2. Maximum throwing velocity (maximal strength)
 5 throws, 30-seconds rest
 - 3. 5-minutes rest
 - 4. Endurance throwing velocity (endurance strength)
 - 10 throws, maximum 5-seconds rest

Performance testing

Isometric dynamometer IR and ER shoulder strength

- Hand-held dynamometer
- 3 repetitions
- maximum effort for 5-seconds
- 30-seconds rest in between each repetition

Training intervention (6 weeks)

SPM group

• SPM protocol: 3/week, 30 minutes

	Level 1	Level 2	Level 3
Sets x repetitions	3 x 20	3 x 20	3 x 20
Excersise 1	Arm supported row	Front raises in 45°	Front raises (thumbs up)
Excersise 2	Parallel resistance front raises	Crossbody resistance band raises	Cross body 'tennis forhand' swing
Excersise 3	Rear dealt fly	Single arm resistance band row	Underhand 'volleyball serve' swing

Control group

• Conventional team strength training program (no SPM)

RESULTS

Table 1 - Demographic and Baseline Characteristics

	SPM group	Control group	p-value
Male sex, n (%)	7 (100%)	7 (100%)	.999
Age, y	19.7 ±2 (18-24)	19.6 ±1 (19-21)	.878
Height, m	1.9 ±0.1 (1.8-1.9)	1.9 ±0.04 (1.8-1.9)	.677
Weight, kg	84.0 ±18 (64.0-120.0)	91.4 ±11 (82.0-120.0)	.356
BMI	21.1 ±10 (20.4-32.2)	26.4 ±3 (23.5-32.0)	.210
Arm span, m	1.9 ±6 (1.9-2.0)	1.9 ±6 (1.8-2.0)	.879

Data presented as mean ±SD (range), unless otherwise specified. Statistically significant values are marked bold.

RESULTS

		SPM group	Control group	p-value
Endurance throwing velocity (km*h ⁻¹)	Baseline ¹	87.6 ±5	92.1 ±4	
	FU ¹	90.5 ±7	93.0 ±5	
	Difference ¹	2.9 ±3	0.9 ±3	.244
	p-value	.056	.440	
	n improved ²	6 (100%)	2 (29%)	.004
Maximum throwing velocity (km*h ⁻¹)	Baseline ¹	89.3 ±6	92.4 ±3	
	FU ¹	92.8 ±8	97.5 ±4.5	
	Difference ¹	3.6 ±2	5.1 ±4	.387
	p-value	.004	.014	
	n improved ²	6 (100%)	7 (100%)	.899

Table 2 – Throwing velocity at baseline and final follow-up

¹Data presented as mean ±SD; ²Data presented as n (%). Statistically significant values are marked bold.

SPM group **Control group** p-value Baseline¹ 18.2 ± 4 22.9 ±3 FU¹ ER 19.6 ±4 22.6 ±4 strength Difference¹ 1.4 ±1 -0.2 ±2 .061 in 90° (kg) p-value .016 .740 n improved² 7 (100%) 3 (43%) .015 Baseline¹ 18.7 ±6 21.2 ±6 FU¹ 19.9 ±4 22.4 ±2 IR Difference¹ 1.17 ±5 1.2 ±4 .986 strength p-value .577 .478 in 90° (kg) n improved² 3 (43%) 4 (57%) .593

Table 3 – ER/IR shoulder strength testing at baseline and final follow-up

¹Data presented as mean ±SD; ²Data presented as n (%). Statistically significant values are marked bold.

RESULTS

